Phosphide coupling in the reaction of $Sn(NMe₂)₂$ with MesPHLi; synthesis and **structure of the Sn(II) phosphide dianion** $[\{Sn(\mu-PMes)\}_2(MesP)_2]^2$ **(Mes =** $2,4,6$ -Me₃C₆H₂)

Andrew D. Bond, Alexander Rothenberger, Anthony D. Woods and Dominic S. Wright*

University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW. E-mail: dsw1000@cus.cam.ac.uk

Received (in Cambridge, UK) 20th December 2000, Accepted 2nd February 2001 First published as an Advance Article on the web 26th February 2001

In contrast to the reactions of other primary phosphides with $Sn(NMe₂)₂$, the reaction of MesPHLi with $Sn(NMe₂)₂$ results **in partial coupling of MesP groups in the product (which** contains the novel $Sn(\Pi)$ dianion $[\{(Sn(\mu-PMes))_{2}$ -(MesP)₂]²⁻).

We recently showed that the heterometallic $Sb(m)$ cage $[\{Sb(PCy)_3\}_3]$ ₂Li₆] (Cy = C₆H₁₁) decomposes at relatively low temperature (30–40 °C) into Zintl compounds containing the Sb_7^3 anion.¹ The isolation of $[CyP]_4$ from this 'cage-to-alloy' reaction suggests that the formation of P–P bonds (the strongest homonuclear Group 15 bond) provides the thermodynamic driving force.¹ In related studies it was shown that probable intermediates in the formation of E_7^{3-} Zintl ions (E = As, Sb) are cyclic anions of the type $[(RP)_nE]^{-2,3}$ A key observation was that the ease of formation of the Zintl compounds is dependent (among other factors) on the nature of the R substituent of the $\overline{RP^{2-}}$ groups.³ Thus, reaction of MesPHLi with $As(NMe₂)₃$ at room temperature in the presence of TMEDA $[$ = $(Me₂NCH₂)₂]$ leads to rapid (1 h) formation of $As₇Li₃·3TMEDA$, whereas prolonged reaction (12 h) of a range of aliphatic primary phosphides with $As(NMe₂)₃$ under similar conditions gives complexes containing $[(RP)_nAs]^-$ anions (*n* = 3 or 4), it being necessary to reflux these reactions in order to effect formation of Zintl compounds.3 The synthesis and structure of $[\{(\text{Sn}(\mu\text{-PMes})\}_2(\text{MesP})_2] \text{Li}_2\text{-}2 \text{TMEDA 2 reported}$ here provides the first evidence that the reactivity pattern established for Group 15 phosphides has broader implications to other p block elements.

In earlier studies we had observed that the reaction of $[SnNBu^t]$ ₄ with CyPHLi (1:6 equiv.) in thf gives the heterometallic complex $[\{Sn(\mu-PCy)_2\}_2(\mu-PCy)]_2Li_4.4\text{thf 1, contain-}$ ing the metallacylic tetraanion $[\{Sn(\mu\text{-}PCy)_2\}_2(\mu\text{-}PCy)]_2^{2}$ ⁻.⁴ The impetus for further studies came with the surprising finding that the same complex is also produced by the reaction of $Sn(NMe₂)₂$ with CyPHLi in thf using a range of stoichiometries (from $1:1.5$ to $1:3$ equiv., respectively) (Scheme 1).⁵ In fact other aliphatic primary phosphides react similarly with $Sn(NMe₂)₂$ in thf. For example, reaction of Bu^tPHLi with $\text{Sn}(\text{NMe}_2)_2$ gives $[\text{Sn}(\mu-\text{B}^{\dagger})_2]_2(\mu-\text{B}^{\dagger})_2]_2$ Li₄.4th f2 (in *ca.*) 60% yield), whose structure is essentially identical to **1**.5 However, the analogous reaction of MesPHLi (Mes = 2,4,6-Me₃C₆H₂) with Sn(NMe₂)₂ gives a radically different result. The product isolated in the presence of the bidentate

donor TMEDA (addition of which was necessary to facilitate crystallisation) is $[\{(Sn(\mu-PMes))_{2}(PMes)_{2}]Li_{2}.2TMEDA$ 3 (in 96% yield).† Some indication of the different outcome of the reaction with MesPHLi is provided by room-temperature NMR studies. In contrast to **1** and **2** where the two 31P NMR environments are markedly different (*e.g.* δ –180 and –249 in **1**), the P environments of **3** occur at very similar chemical shifts $(\delta$ -156.7 and -157.5). In addition, the electronic environment of the Sn centres in **3** (δ -154.6) is clearly vastly different from that found in 1 and 2 (*ca.* δ +690).⁴ However, the Sn–P coupling was poorly resolved in the spectra of **3** so that no information concerning the connectivities of either nucleus within the core of the complex could be gleaned.

The low-temperature \bar{X} -ray structure of $3\ddagger$ shows that the complex is an ion-paired species, arising from the association of a $\left[\frac{\text{Sn}(\mu\text{-PMes})}{2}\right]_2(\text{PMes})_2^2$ dianion with two TMEDA solvated Li⁺ cations (Fig. 1). In addition, there are two molecules of toluene in the lattice for each molecule of **3**. Although only a few $Sn(II)$ and $Pb(II)$ complexes containing RP^{2-} ligands have been structurally characterised,^{4,6} (like 3) the majority of these are ion-paired molecular species contain-

Fig. 1 The heterometallic cage structure of **3**. H atoms, lattice-bound toluene molecules and the disorder about the $-CH₂CH₂$ groups of the TMEDA ligands have been omitted for clarity. Key bond lengths (Å) and angles (°); $Sn(1) - P(1) 2.635(1), Sn(1) - P(2) 2.636(1), Sn(1) - P(4) 2.627(1), Sn(2) - P(1)$ 2.615(1), Sn(2)–P(3) 2.648(1), Sn(2)–P(4) 2.646(1), Li(1)–P(1) 2.518(8), Li(1)–P(2) 2.596(7), Li(2)–P(3) 2.609(7), Li(2)–P(4) 2.533(7), P(2)–P(3) 2.186(2), Li(1,2)–N(1,2,3,4) range 2.090(8)–2.118(8); Sn(1)–P(1,2)–Sn(2) mean 86.8, P(1)–Sn(1,2)–P(4) mean 90.6, P(1)–Sn(1)–P(2)/P(3)–Sn(2)– P(4) mean 75.8, P(4)–Sn(1)–P(2)/P(4)–Sn(2)–P(3) mean 93.7, Sn–{P(2)– P(3)} mean 99.8.

ing $Sn(II)$ phosphide anions coordinated to alkali or alkaline earth metal cations. However, in none of these previous examples has the formation of a P–P bond (*via* coupling of $RP²$ anions) been observed. Of particular note in comparison with **3**, is the formation of $[(Me₃Si)PSn(\mu-PSiMe₃)]₂(Ca·2thf)₂$ in the reaction of $[Ca\{PSiMe₃\}$ ₂ with $SnCl₂.^{6b}$ The latter complex contains a $[(Me₃Si)PSn(\mu-PSiMe₃)]₂⁴⁻ tetraanion$ whose framework can be regarded as related to the $[\{(\text{Sn}(\mu-))\}$ $PMes)$ ₂($P Mes$ ₂)^{2–} dianion of **3** by 2e reduction and cleavage of the P–P bond.

Examination of the bond lengths and angles found in the bicyclic Sn_2P_4 core of 3 indicates that there is a considerable amount of strain in this arrangement. Thus, although the Sn–P bond lengths are similar to those found in the few structurally characterised $Sn(II)$ complexes containing $RP²$ ligands,⁶ these bonds fall over a wide range of values [2.615(1)–2.648(1) Å]. In addition, the $Sn(II)$ centres adopt highly irregular pyramidal geometries, with the P–Sn–P angles involved being in the range 75.75(3)–94.71(3)°. Clearly, the distortions found in the Sn_2P_4 core can be partly attributed to the geometric constraints involved in the coordination of the MesPPMes ligand to the two Sn centres of the $Sn_2(PMes)_2$ dimer unit. Some evidence for this view is seen in the compression of the P–P bond of the MesPPMes ligand $[P(2)-\overline{P(3)} 2.186(2)$ Å]; a value which is significantly shorter than that observed for the Bu^tPPBu^t groups in the Sn(IV) complex $[ClSn{Bu}^t]PBu^t}3SnCl]^7$ (2.237 Å). However, the highly distorted geometry of the $Sn(II)$ centres in **3** is primarily the result of the chelation of each of the pseudotetrahedral Li+ cations by a P centre of the MesPPMes group [Li(1,2)–P(2,3) mean 2.60 Å⁷] and by a MesP ligand [Li(1,2)– P(1,4) mean 2.53 Å⁷] of the $[\{(\text{Sn}(\mu\text{-PMes})\}_2(\text{MesP})_2]^2$ dianion. This coordination to the Li+ ions results in the compression of the associated P–Sn–P angles [P(1)–Sn(1)–P(2) and P(3)–Sn(2)–P(4) mean 75.8°; *cf*. 90.59(3)–94.71(3)° for the remaining P–Sn–P angles].

In summary, the reactions of $Sn(NMe₂)₂$ with RPHLi (R = Cy, But) and MesPHLi parallel those with Group 15 reagents $E(NMe₂)₃$ (E = As, Sb, Bi) and a range of lithium primary phosphides (RPHLi). In this context, the \iint_{S} (Sn(μ - $PMes$) $_{2}$ (PMes)₂]²⁻ dianion core of **3** can be regarded as the Group 14 counterpart of the previously studied Group 15 $[(RP)_nE]$ ⁻ anions. The $[{(Sn(\mu-PMes))}_2(MesP)_2]$ ²⁻ anion of **3** has the potential to act as a multi-electron donor to a range of main group and transition metal complexes, yielding a variety of mixed-metal complexes. Furthermore, the thermolysis of **3** and similar complexes may lead to further P–P bond formation, providing a route to Sn Zintl phases.

We gratefully acknowledge the EPSRC (A. D. B., A. D. W.) and the Gottlieb Daimler- and Karl Benz-Stiftung (A. R.) for financial support.

Notes and references

 \dagger *Synthesis of* **3**: to a solution of MesPH₂ (0.94 ml, 6.0 mmol) in toluene (20 ml) at -78 °C was added BunLi (4.0 ml, 6.0 mmol, 1.6 mol dm⁻³ in hexanes). Stirring at room temperature (1 h) produced a yellow precipitate of the monolithiate. To this suspension at -78 °C was added a solution of $Sn(NMe₂)₂$ (0.42 g, 2.0 mmol) in toluene (10 ml). Warming to room temperature led to the formation of a red–orange precipitate which was dissolved by the addition of TMEDA (1 ml, excess). Storage at 5 °C for 24 h gave orange crystalline blocks of **3**. Spectroscopic and analytical studies of **3** show that the toluene solvation found in the lattice is removed by placing crystalline samples under vacuum (ca . 15 min, 10^{-1} atm) during isolation. Yield 1.04 g (96%). ¹H NMR (400.16 MHz, d₈-toluene, +25 °C), d 6.92 (S, 8H, aryl C–H), 2.90 (s, 12H, 4-Me of Mes), 2.65 (s, 24H, 2,6-Me of Mes), 1.97 (s, 24H, Me₂N of TMEDA), 1.83 (br s, 8H, $-CH_2CH_2$ – of TMEDA). ³¹P NMR (161.98 MHz, d₈-toluene, +25 °C, rel. 80% H₃PO₄-D₂O), δ -156.7 (s), -157.5 (s). ⁷Li NMR (155.55 MHz, d₈-toluene, +25 $^{\circ}$ C), δ 0.20 (s). ¹¹⁹Sn NMR (141.21 MHz, d₈-toluene, +25 °C, rel. sat. SnCl₂–D₂O), δ –154.6 (br s). Satisfactory (C,H,N) analysis was obtained for $3(-2$ toluene).

 \ddagger *Crystal data* for **3**: C₆₂H₉₂Li₂N₄P₄Sn₂, *M* = 1268.54, monoclinic, space group $P2_1/c$, $Z = 4$, $a = 21.4284(3)$, $b = 13.5986(2)$, $c = 22.9153(2)$ Å, $\beta = 94.644(9)$ °, $V = 6655.51(15)$ Å³, μ (Mo-K α) = 0.884 mm⁻¹, *T* = 180(2) K. Data were collected on a Nonius KappaCCD diffractometer. Of a total of 60891 reflections collected, 15148 were independent (R_{int} = 0.059). The structure was solved by direct methods and refined by fullmatrix least squares on F^2 . Final $R1 = 0.053$ [$I > 2\sigma(I)$] and $wR2 = 0.174$ (all data).8 The $-CH_2CH_2$ – groups of one of the TMEDA ligands are disordered over two sites. This was modelled with 50% occupancy in each. CCDC 156336. See http://www.rsc.org.suppdata/cc/b0/b010201f/ for crystallographic data in .cif or other electronic format.

- 1 See: M. A. Beswick, J. M. Goodman, C. N. Harmer, A. D. Hopkins, M. A. Paver, P. R. Raithby, A. E. H. Wheatley and D. S. Wright, *Chem. Commun.*, 1997, 1897; M. A. Beswick, C. N. Harmer, A. D. Hopkins, M. McPartlin and D. S. Wright, *Science*, 1998, **281**, 1500.
- 2 M. A. Beswick, N. Choi, A. D. Hopkins, M. E. G. Mosquera, M. McPartlin, P. R. Raithby, A. Rothenberger, D. Stalke, A. E. H. Wheatley and D. S. Wright, *Chem. Commun.*, 1998, 2485.
- 3 A. Bashall, M. A. Beswick, N. Choi, A. D. Hopkins, S. J. Kidd, Y. G. Lawson, M. E. G. Mosquera, M. McPartlin, P. R. Raithby, A. E. H. Wheatley, J. A. Wood and D. S. Wright, *J. Chem. Soc., Dalton Trans.*, 2000, 479.
- 4 R. E. Allen, M. A. Beswick, N. L. Cromhout, M. A. Paver, P. R. Raithby, M. Trevithick and D. S. Wright, *Chem. Commun.*, 1996, 1501.
- 5 The reactions of Sn(NMe₂)₂ with CyPHLi and Bu^tPHLi occur most smoothly using an apparent excess of the primary phosphide, in a 1:3 ratio. Details of the new synthesis of **1** and **2** and of the structure of **2** will be published as part of a full paper.
- 6 (*a*) M. Westerhausen, R. Low and W. Schwarz, *J. Organomet. Chem.*, 1996, **513**, 213; (*b*) M. Westerhausen and W. Schwarz, *Z. Anorg. Allg. Chem.*, 1996, **622**, 903; (*c*) M. Driess, S. Martin, K. Merz, U. Pintchouk, H. Pritzkow, H. Grützmacher and M. Kaupp, *Angew. Chem., Int. Ed. Engl.*, 1997, **36**, 1894; (*e*) M. Westerhausen, M. Krofta, N. Wiberg, H. Nöth and A. Pfitzer, *Z. Naturforsch., Teil B*, 1998, **53**, 1489.
- 7 P–Li bond lengths are typically in the range 2.47–2.70 Å (depending on the coordination number of the Li+ cations involved). For examples, see: R. A. Jones, A. L. Stuart and T. C. Wright, *J. Am. Chem. Soc.*, 1983, **105**, 7459; L. M. Engelhardt, G. E. Jacobsen, C. L. Raston and A. H. White, *J. Chem. Soc., Chem. Commun.*, 1984, 220; P. B. Hitchcock, M. F. Lappert, P. P. Power and S. J. Smith, *J. Chem. Soc., Chem. Commun.*, 1984, 1669; A. M. Arif, A. H. Cowley, R. A. Jones and J. M. Power, *J. Chem. Soc., Chem. Commun.*, 1986, 1446; R. E. Mulvey, K. Wade, D. R. Armstrong, G. T. Walker, R. Snaith, W. Clegg and D. Reed, *Polyhedron*, 1987, **6**, 987.
- 8 SHELXTL PC version 5.03, Siemens Analytical Instruments, Madison, WI, 1994.